Q.P. Code: 19CE0101

3.1. Some sension 21 suite OC sine Company of an operation

Reg. No:

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech I Year I Semester Supplementary Examinations December-2021 ENGINEERING MECHANICS

(Common to CE, AGE & ME)

Time: 3 hours

Max. Marks: 60

R19

(Answer all Five Units $5 \times 12 = 60$ Marks)

	. UNIT-I	
1	a State and prove parallelogram law of forces.	6M
	b Classify different system of forces with suitable examples.	6 M
	OR	
2	State and prove Varignon's theorem.	12M
	UNIT-II	
3	a State laws of friction.	8 M
	b Explain Cone of Friction with a neat sketch.	4M
	OP	

4 A ladder 5 meters long rests on a horizontal ground and leans against a smooth vertical 12M wall at an angle 70° with the horizontal. The weight of the ladder is 900 N and acts at its middle. The ladder is at the point of sliding, when a man weighing 750N stands on a rung 1.5 metre from the bottom of the ladder. Calculate the coefficient of friction between the ladder and the floor.

UNIT-III

5 A uniform lamina shown in Fig. 12 consists of a rectangle, a circle and a triangle. 12M Determine the centre of gravity of the lamina. All dimensions are in mm

Q.P. Code: 19CE0101

OR

6 Find the centre of gravity of a channel section $100 \text{ mm} \times 50 \text{ mm} \times 15 \text{ mm}$ as shown in

UNIT-IV

7	Prove the parallel axis theorem in the determination of moment of inertia of areas with	12M
	the help of a neat sketch.	
	OR	
8	a Derive an equation for moment of inertia of a rectangular section about centroidal axis.	6M
	b Derive an equation for moment of inertia of a triangular section from its base about centroidal axis.	6M
	UNIT-V	
9	Explain the procedure to find forces in members of truss by using method of joints.	12M
	OR	
10	i) What is a cantilever truss? How will you find out its reactions?	12M
	ii) State the assumptions made in the analysis of pin jointed trusses.	
	iii) How method of joint differs from the method of section in the analysis of pin jointed	
	trusses?	
	iv) What is meant by perfect frame?	

v) What are the types of vibrations?

*** END ***

12M

R19